Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2.

نویسندگان

  • A M Ramon
  • A Porta
  • W A Fonzi
چکیده

The ability to respond to ambient pH is critical to the growth and virulence of the fungal pathogen Candida albicans. This response entails the differential expression of several genes affecting morphogenesis. To investigate the mechanism of pH-dependent gene expression, the C. albicans homolog of pacC, designated PRR2 (for pH response regulator), was identified and cloned. pacC encodes a zinc finger-containing transcription factor that mediates pH-dependent gene expression in Aspergillus nidulans. Mutants lacking PRR2 can no longer induce the expression of alkaline-expressed genes or repress acid-expressed genes at alkaline pH. Although the mutation did not affect growth of the cells at acid or alkaline pH, the mutants exhibited medium-conditional defects in filamentation. PRR2 was itself expressed in a pH-conditional manner, and its induction at alkaline pH was controlled by PRR1. PRR1 is homologous to palF, a regulator of pacC. Thus, PRR2 expression is controlled by a pH-dependent feedback loop. The results demonstrate that the pH response pathway of Aspergillus is conserved and that this pathway has been adapted to control dimorphism in C. albicans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans

Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...

متن کامل

Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans.

Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerev...

متن کامل

Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans.

Morphological development of the fungal pathogen Candida albicans is profoundly affected by ambient pH. Acidic pH restricts growth to the yeast form, whereas neutral pH permits development of the filamentous form. Superimposed on the pH restriction is a temperature requirement of approximately 37 degrees C for filamentation. The role of pH in development was investigated by selecting revertants...

متن کامل

Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs.

Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C...

متن کامل

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity

Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 24  شماره 

صفحات  -

تاریخ انتشار 1999